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We present a simple density functional theory for the solid phases of systems of particles interacting via
soft-core potentials. In particular, we apply the theory to particles interacting via repulsive point Yukawa and
Gaussian pair potentials. We find qualitative agreement with the established phase diagrams for these systems.
The theory is able to account for the bcc-fcc solid transitions of both systems and the re-entrant melting that the
Gaussian system exhibits.
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I. INTRODUCTION

When an ensemble of particles is at a sufficiently high
density, the fluid will often freeze to form a crystalline solid.
This freezing is driven by the repulsion that invariably exists
between particles when at close separations. The question
that naturally arises is: how much repulsion is needed for
freezing and what crystal structures are formed? The answer
is that even particles interacting via repulsive pair potentials
v�r� that are finite for all separations r can freeze �1–3�. The
particular crystal structure that is formed depends upon the
form of the particle interactions and especially on the “soft-
ness” of the decay of v�r� as r→� �4�. Furthermore, there
can be solid-solid transitions, with different crystal structures
being stable in different portions of the phase diagram. In
this paper we present a simple density functional theory
�DFT� �5� for determining the location of the melting and
solid-solid phase boundaries for soft-core particles.

For the purposes of this paper, we define “soft-core” par-
ticles as those with purely repulsive pair potentials v�r�, for
which the integral over all space of v�r� is finite, i.e.,
�dr v�r���. Alternatively, one can define soft-core poten-
tials as those for which the Fourier transform v̂�k� of the pair
potential exists. Commonly encountered �model� potentials
in the theory of liquids such as the Coulomb potential, the
hard-sphere potential, or the Lennard-Jones potential �6� do
not fall into this category. However, a wide class of fluids
can be modeled by particles interacting via potentials that do
fall into the soft-core category. One common example is the
Yukawa core model �YCM�:

v�r� =
� exp�− �r�

�r
, �1�

where ��0 and ��0. Such a potential is used to model the
effective interaction between charged point particles, where
the Coulomb interaction between the particles is screened by
a background medium. The effects of the screening are in-
corporated in the parameter � �7,8�. Examples of systems
where the particle interactions can be modeled by a Yukawa

pair potential range from charged colloidal solutions �8–10�
to dusty plasmas �11–14�.

Another soft-core potential is the Gaussian core model
�GCM�:

v�r� = � exp�− �2r2� . �2�

The freezing behavior of a fluid composed of particles inter-
acting via such a potential aroused much interest due to the
novel re-entrant melting behavior: for certain temperatures,
when increasing the fluid density, the fluid freezes. However,
on further increasing the density, the crystal remelts �1�. The
high density phase of the GCM is the fluid state �1,15–19�. A
Gaussian potential is used to model the effective interaction
between the centers of mass of polymers, star polymers and
dendrimers in solution �1,20�. In this case �−1�R, the radius
of gyration of the polymers.

The DFT theory for freezing presented here is a simple
qualitatively accurate theory which, for the cases we have
tested, gives the correct topology of the phase diagram, in-
cluding the existence of solid-solid phase transitions—i.e.,
the theory incorporates in a simple way much of the physics
of the solid phases of soft-core particles. Furthermore, we
believe that the present theory is of general interest to the
classical DFT community, since many DFT theories are un-
able to describe solid-solid coexistence. For example, in
Refs. �21,22� the authors applied DFTs that are very success-
ful for hard spheres to fluids composed of particles interact-
ing via Yukawa and inverse power pair potentials and found
them not to predict the bcc phase. The present work may
give some insight into what is required in a DFT in order to
describe a solid-solid transition—see also Ref. �23�.

This paper is laid out as follows: In Sec. II we describe
the DFT theory. In Sec. III we apply the theory to the GCM
and then in Sec. IV to the YCM. Finally, in Sec. V we dis-
cuss our results and draw some conclusions.

II. THE DFT THEORY

Given an expression for the Helmholtz free energy of a
system, one can obtain all other thermodynamic quantities. It
can be shown that the Helmholtz free energy F is a unique
functional of the one-body density profile of the system, ��r�
�5�. We can divide the Helmholtz free energy into two parts:*Electronic address: Andrew.Archer@bristol.ac.uk
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F��� = Fid��� + Fex��� . �3�

The first term is the ideal gas contribution �5�:

Fid��� = kBT� dr��r��ln„��r��3
… − 1� , �4�

where T is the temperature, kB is Boltzmann’s constant, and
� is the thermal de–Broglie wavelength. The excess part is
given formally by �5�

Fex��� =
1

2
� dr� dr� v�r,r����r���r���

0

1

da g�r,r�;a�

�5�

where g�r ,r� ;a� is the inhomogeneous radial distribution
function corresponding to a system of particles interacting
via the pair potential av�r ,r��, i.e., Eq. �5� is formally de-
rived by “turning on” the interactions between the particles
�via the parameter 0�a�1� and integrating g�r ,r� ;a� as a
is increased from 0 to 1 keeping ��r� fixed �5�. The main
approximation in our theory involves replacing the function
�0

1da g�r ,r� ;a� by a simple ansatz. This is given below; first
we make a few remarks about ��r�.

When in the uniform fluid state, the one-body density is a
constant, ��r�=��N /V, the average number density, where
N is the number of particles and V is the volume of the
system. However, when the system freezes into a solid the
density becomes periodic, i.e., the symmetry breaks and
��r�=��r−Ri�, where Ri is a lattice vector for the solid
phase. An approximation that is often made in DFT studies
of freezing �1,24�, is to assume that the density profile of the
solid is made up of Gaussian peaks centerd on each lattice
site:

��r� = 	
i=1

N

G�r − Ri� �6�

with

G�r − Ri� = 
	



�3/2

exp�− 	�r − Ri�2� , �7�

where 	 is a parameter which describes how localized the
particles are around each lattice site. This density profile as-
sumes the normalization condition that there is one particle
per lattice site. Of course, this assumption need not necessar-
ily be true. We can expect to find vacancies in the crystal,
and indeed for the present soft-core systems we may find
another type of defect: double occupancy, since the particle
cores can overlap. However, we expect the proportion of
defects to be small, and assume a perfect crystal with sites
singly occupied.

Together with the assumption that ��r� takes the form in
Eq. �6� we make the further assumption that Fex takes the
form:

Fex =
1

2	
i�j
� dr� dr�v�r − r��G�r − Ri�G�r� − R j� .

�8�

This constitutes a random-phase-like approximation for
�0

1da g�r ,r� ;a� in Eq. �5�, with the “self-energy” term in the
summation over lattice vectors Ri=R j being subtracted.
When 	 is sufficiently large so that there is negligible over-
lap between the density peaks on neighboring lattice sites,
our assumption is equivalent to

�
0

1

da g�r,r�;a� = �0, r − r� � l

1, r − r� � l ,
� �9�

where the length l�b1 /2 and b1 is the distance between
nearest neighbor lattice sites. This approximation, therefore,
constitutes quite a drastic simplification of the function
�0

1da g�r ,r� ;a�, which neglects much of the information
about correlations in the system that this function contains.

Equation �8� is very appealing because it takes the form of
a double convolution and can, therefore, be written in the
form:

Fex��,	� =
1

2	
i�j

1

�2
�3 � dk exp�ik · Rij�v̂�k�Ĝ�k�Ĝ�k� ,

�10�

where Rij =R j −Ri and Ĝ�k� is the Fourier transform of G�r�.
Since G�r� is a Gaussian function, then so is Ĝ�k�.

The ideal gas contribution to the Helmholtz free energy
�4� also takes a simple form if we assume ��r� is given by
Eq. �6� and we further assume that 	 takes values sufficiently
large that the overlap between the Gaussian density peaks on
neighboring lattice sites is negligible. Then the ideal gas part
of the Helmholtz free energy, Eq. �4�, is simply �see, e.g.,
�21��

Fid�T,N,	� = NkBT�3

2
ln
�2	



� −

5

2
� . �11�

Given a pair potential v�r�, for which the Fourier trans-
form v̂�k� exists, Eqs. �10� and �11� together provide an ex-
pression for the free energy F which is a function of tem-
perature, the average density �, the parameter 	, and the set
of lattice vectors �Ri�. For a given state point �T ,�� and
lattice structure, we assume that the parameter 	 is deter-
mined by the minimization condition ��F /�	�	=	min

=0 �25�
and we assume that the Helmholtz free energy F=F�	min�.
We can, therefore, calculate the Helmholtz free energy for a
number of candidate crystal structures and then the equilib-
rium crystal structure is the structure with the lowest free
energy. In order to determine the melting phase boundary we
could compare this minimal value of f =F /V with that cal-
culated from the theory applied to the liquid state and then
perform the common tangent construction between these free
energies �which is equivalent to equating chemical potentials
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and pressures in the coexisting phases �1��. In the liquid
state, where ��r�=�, the ideal gas contribution to the Helm-
holtz free energy �4� becomes

Fid��� = NkBT�ln���3� − 1� , �12�

and the excess contribution, obtained from Eqs. �5� and �9�,
is

Fex
liq��� = 2
N��

l

�

dr r2v�r� . �13�

The latter constitutes a very crude approximation for the liq-
uid state free energy. Given that our aim here is to construct
a theory which is above all simple, but which is still able to
provide a qualitative description of the solid phases of soft-
core particles, we choose to employ a Lindemann criterion
�26� to calculate the solid melting curves, rather than com-
pare our solid free energy with that of the liquid. The Linde-
mann criterion simply states that when the root-mean-square
displacement, ����r2�− �r�2�1/2, of a particle about its equi-
librium position is roughly 10% of the nearest neighbour
distance b1, the crystal will melt. For the Gaussian density
profile, Eq. �6�, �=�3/2	 and we determine approximate
melting boundaries from the locus defined by � /b1=0.1.

One can improve upon Eq. �6� as an approximation for
the density profile in the crystal: in order to incorporate the
effects of anisotropy in the density peaks around each lattice
site one can assume the density profile is of the following
form:

��r� = 	
i=1

N 
	



�3/2

e−	�r − Ri�
2
�1 + �	2f�r − Ri�� , �14�

where the function f�r�=x4+y4+z4−3r4 /5 is the leading
term for the unit cell anisotropy in cubic lattices �27,28� and
� is an anisotropy parameter. One then minimizes the free
energy with respect to �, as well as 	. We attempted such an
approach for the GCM, but we found it made no significant
change to the phase diagram that we obtained from the
simple choice �6�.

III. APPLICATION TO THE GCM

In the GCM, the interparticle pair potentials are given by
Eq. �2�. The Fourier transform of this Gaussian potential is
also a Gaussian and so the excess Helmholtz free energy
given by Eq. �10� takes the particularly simple form:

Fex
GCM = 	

i�j

�3/2

2�3 exp�− Rij
2 � , �15�

where = �1/�2+2/	�−1 and Rij = Rij. Using Eqs. �11� and
�15� as our approximation for the Helmholtz free energy of
the crystal, we calculate the phase diagram for the GCM. The
results are displayed in Fig. 1. Recently, Prestipino et al. �19�
made an accurate determination of the GCM phase diagram
using Monte Carlo simulations, so we are able to compare
with these essentially exact results �see also Ref. �18��. We
find, as did Prestipino et al. �19�, that at low temperatures, on

increasing the density, the fluid first freezes to form a face-
centred-cubic �fcc� crystal, and then on further increasing the
density there is a transition from the fcc to a body-centred-
cubic �bcc� crystal �29�—see Fig. 1. Performing the common
tangent construction between the bcc and fcc free energies,
we find that the two-phase region between the two crystal
phases is very narrow, the difference between the coexisting
densities ���−3�10−4—see also the inset to Fig. 9 of Ref.
�18�. Since we are mostly interested in providing a simple
theory which accounts for the topology of the phase diagram,
we determined the density at which the Helmholtz free en-
ergy of the bcc equals that of the fcc structure for a given
temperature �31�. The resulting line is plotted in Fig. 1. The
present theory also accounts for the most striking feature of
the GCM phase diagram: the re-entrant melting of the bcc
phase—i.e., for a given �low� temperature, on increasing the
fluid density it freezes, but on further increasing the density
the crystal remelts. The high density phase of the GCM is a
fluid. This means there is also a maximum temperature for
which there is a crystal. The present theory predicts this
maximum to be at a temperature kBT /��0.012, whereas it is
actually at kBT /��0.009 �19�. In general, the present theory
overestimates the region of stability for the solid phases.

We also determine an approximate melting boundary by
calculating the locus in the phase diagram where the bcc free
energy equals the liquid state free energy �31�, where the
liquid Helmholtz free energy is calculated using the crude
approximation, Eq. �13�, which for the GCM becomes

Fex
GCM,liq =

1

2
N�
3/2��−3�2�l

�

exp�− �2l2� + erfc��l�� ,

�16�

where erfc�x�=1−2
−1/2�0
xdt exp�−t2� is the complimentary

error function. While we know l�b1 /2, there is no con-

FIG. 1. Phase diagram of the GCM. The solid line is the bcc
melting boundary and the dashed line is the fcc melting boundary,
both determined using the Lindemann criterion—see the text. The
dot-dashed line is the locus of points where the Helmholtz free
energies of the bcc and fcc phases are equal. The dotted lines are the
phase boundaries obtained from the computer simulations of Presti-
pino et al. �19�.
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straint on a particular value. We choose the value l
�0.58�2/��1/3 �recall that for the bcc crystal b1= ��3/2�
��2/��1/3�. This value of l is chosen so that the maximum
temperature where freezing occurs is predicted to be roughly
at the same temperature as that from the results of Prestipino
et al. �19�. Note, on the scale of Fig. 2, using this approach
there is no difference between the predicted locations of the
bcc-liquid melting boundary and the fcc-liquid melting
boundary. Given the crude nature of the theory for the liquid,
the results are surprisingly good—see Fig. 2.

The main feature of the GCM phase diagram that is not
accounted for by the present theory, and which can be seen in
the results of Prestipino et al. �19� �see also Fig. 1�, is that
the transition line between the fcc and bcc phases is not the
�almost� straight line predicted by the present theory. Instead,
on following the fcc-bcc boundary as the temperature is in-
creased, the boundary obtained in simulation curves over to
lower densities and in fact reaches a maximum and then
bends down to lower temperatures and densities, such that
there is a small window in the phase diagram where for
temperatures around kBT /��0.0035, on increasing the den-
sity, the fluid first freezes to form the bcc, then the fcc and
then the bcc phase again, before finally remelting �19�. This
bending over of the fcc-bcc boundary was ascribed to anhar-
monic effects in the crystal �19�. In an attempt to incorporate
this effect we assumed the density took the form given in Eq.
�14�. Within the present theory anharmonic effects do indeed
become more significant in the high temperature part of the
fcc portion of the phase diagram. However, they do not be-
come significant enough to result in the fcc-bcc boundary
curving over, as in the results of Prestipino et al. �19�; as-
suming that ��r� takes the form in Eq. �14� leaves the phase
diagram unchanged when plotted on the scale given in Fig.
1.

For the results presented in Fig. 1 we summed over 40
shells of lattice vectors �including any more does not change
the value calculated for the free energy�. However, it is in-

teresting to note that if one includes only the first two
shells—i.e., nearest neighbor and next nearest neighbor con-
tributions only, then the results are qualitatively unchanged
�32�. This is not too surprising, given the short ranged nature
of the GCM pair potential.

IV. APPLICATION TO THE YCM

The Fourier transform of the YCM pair potential, Eq. �1�,
is v̂�k�=4
��−1��2+k2�−1. Using this, together with Eq. �10�,
we obtain the following expression for the YCM excess
Helmholtz free energy:

Fex
YCM = 	

i�j

�e�2/2	

4�Rij
�e−�Rij erfc
 �

�2	
− Rij�	

2
�

− e�Rij erfc
 �

�2	
+ Rij�	

2
�� . �17�

This approximation, together with Eq. �11�, is our expression
for the Helmholtz free energy of the solid phases of the
YCM. For a given state point �� ,T� and set of lattice vectors
�Ri�, we minimize the free energy with respect to the param-
eter 	. We estimate the melting boundaries using the Linde-
mann criterion—i.e., the locus defined by � /b1=0.1. In Fig.
3 we display the resulting phase diagram. For the YCM, the
crude estimate for the liquid state excess Helmholtz free en-
ergy, Eq. �13�, does not give physically acceptable results.
For some choices of l in �13� it �incorrectly� predicts that the
YCM exhibits re-entrant melting. We therefore employ only
the Lindemann criterion for determining melting boundaries
in this section.

The low density portion of the YCM phase diagram is
qualitatively similar to that of the GCM—i.e., for sufficiently
low temperatures, on increasing the density the fluid first
freezes to form a fcc crystal, then, at higher densities, there is

FIG. 2. Same as Fig. 1, except that now the solid line is the
locus of points where the Helmholtz free energies of the bcc and
liquid phases are equal. The liquid state free energy is calculated
using the rather crude approximation in Eq. �13�.

FIG. 3. Phase diagram of the YCM. The solid line is the bcc
melting boundary and the dashed line is the fcc melting boundary,
both determined using the Lindemann criterion—see the text. The
dot-dashed line is the locus of points where the Helmholtz free
energies of the bcc and fcc phases are equal.

A. J. ARCHER PHYSICAL REVIEW E 72, 051501 �2005�

051501-4



a transition to the bcc. The biggest difference between the
YCM and the GCM phase diagram is that there is no re-
entrant melting in the YCM. This is because the divergence
of the YCM pair potential as r→0 means that the particles
behave more and more like hard spheres as the density is
increased, where the effective hard sphere diameter depends
upon the state point �T ,��, so that there is freezing of the
YCM at all temperatures. For the GCM this is not the case.
Note that a divergence in the pair potential at r→0 does not
automatically mean that there is no re-entrant melting �33�.

Just as for the GCM, the present theory for the YCM also
fails to account for the curving over to lower densities of the
fcc-bcc boundary as the temperature is increased in the
YCM. This can be seen in Fig. 4, where we plot the YCM
phase diagram that we obtain together with that of Hamagu-
chi et al. �34� �see also Refs. �35–41��, plotted in terms of the
variables �=�� /�a and �=�a, where a= �3/4
��1/3. These
are commonly considered variables when using the Yukawa
potential �1� to model the interactions in plasma systems. We
see that the present simple theory is able to account qualita-
tively for the YCM phase diagram.

V. DISCUSSION AND CONCLUSIONS

We have constructed a simple DFT for the solid phases of
soft-core particles. The theory is able to account for the tran-
sition from a fcc to a bcc solid and is also able to determine
whether the system exhibits re-entrant melting, as is the case
for the GCM, or not, as in the case for the YCM �when a
Lindemann criterion is used to determine the melting bound-
aries�. This makes the DFT useful, since many DFTs are not
able to describe solid-solid coexistence in soft-core fluids
�21,22�. There are some DFT theories that are able to de-
scribe solid-solid transitions in other �hard-core� model
fluids—see, for example, Refs. �1,42,43�. In fact, the present
theory bears some similarities in its structure to that of Likos
and co-workers �1,42�. This can be traced to the use of the

Gibbs-Bogoliubov inequality to construct their theory. When
one applies this inequality, one obtains the following equa-
tion �Eq. �4.18� in Ref. �1��

F��� � F0��� +
1

2
� dr� dr� g0�r,r����r���r��v�r − r�� ,

�18�

where g0 and F0 are the pair distribution function and the
Helmholtz free energy, respectively, of the reference system;
Likos and co-workers �1,42� used a hard-sphere fluid as the
reference system. If we compare Eq. �18� with Eq. �5� we
can see that depending on our approximations for g0�r ,r�� in
�18� and �0

1da g�r ,r� ;a� in �5�, one can end up with theories
that have a similar structure.

One also sees similar features when we compare our ex-
pression for the GCM Helmholtz free energy, Eqs. �11� and
�15�, with that obtained by Lang et al. �18� �see also Ref. �1��
using the Gibbs-Bogoliubov inequality together with the Ein-
stein model as their reference system. Their resulting Helm-
holtz free energy is almost exactly the same as that in the
present theory �the free energies differ only by kBT per par-
ticle, with that of Lang et al. being lower�. In the theory of
Lang et al. �18� the Einstein model spring constant is the
variational parameter for minimizing the free energy,
whereas in the present theory it is the parameter 	 in Eq. �6�.
However, formally these parameters play exactly the same
role. Use of the Gibbs-Bogoliubov inequality therefore
seems to lead to theories with a structure similar to the
theory presented here. When taking our present approach,
i.e., using the Lindemann criterion to determine the melting
boundaries, the difference of NkBT between the Helmholtz
free energy of the present theory and that of Lang et al. �18�
makes no difference since this term is independent of 	.
However, it would matter if we were to compare our result
for the solid free energy with that obtained for the liquid
from some other theory, more accurate than that from Eq.
�13�.

Some soft-core fluids exhibit freezing to states with mul-
tiple occupancies of each lattice site �2,44�. In order to apply
the present theory to such systems, some modification of the
theory is required. Firstly, one must assume a generalization
of Eq. �6� for the density profile of the crystal:

��r� = �	
i=1

N 
	



�3/2

e−	�r − Ri�
2
, �19�

where � is the average lattice site occupancy. � should be
treated as a parameter to minimize the Helmholtz free en-
ergy, in the same way as with the parameter 	. In this case,
there would be two minimization conditions to be satisfied:
��F /�	�	=	min

=0 and ��F /����=�min
=0. One would then as-

sume that the Helmholtz free energy F=F�	min ,�min�. This
would also be the scheme to apply if one intended to study
the effect of lattice defects in the present YCM and GCM
systems. However, in these cases one would expect ��1.
For systems exhibiting multiple occupancies of each lattice
site, we expect one would also have to make a different
approximation for the function �0

1da g�r ,r� ;a� in Eq. �5�. We

FIG. 4. Same as Fig. 3, except here the results are plotted in
terms of the variables � and �. The symbols joined by solid lines
are the simulation results of Hamaguchi et al. �34�.
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would propose the following generalization of Eq. �8�:

Fex��� =
�

2 	
j=1

N

	
i=1

N

�� − �ij� � dr� dr�v�r,r��

�G�r − Ri�G�r� − R j� . �20�

From a more general point of view, the present theory
seems to provide a good qualitative description of the solid
phases of soft-core systems. The Yukawa potential �1� is
used to model the effective interaction between charged col-
loidal particles �7–10�. For example, the phase diagram of
polystyrene particles suspended in a potassium chloride so-

lution can be mapped on to that of the YCM �45�. The
present theory should also be relevant to soft matter systems,
for example, polymeric micelles �22�, star polymers �33�,
and dendrimers �46�. Given an effective pair potential v�r�
between such objects �1�, one could use the present theory to
calculate an approximate phase diagram.

ACKNOWLEDGMENTS

I thank Christos Likos and Bob Evans for useful discus-
sions and for critically reading this manuscript. I gratefully
acknowledge the support of EPSRC under Grant No. GR/
S28631/01.

�1� C. N. Likos, Phys. Rep. 348, 267 �2001�.
�2� C. N. Likos, M. Watzlawek, and H. Löwen, Phys. Rev. E 58,

3135 �1998�.
�3� C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys.

Rev. E 63, 031206 �2001�.
�4� R. Agrawal and D. A. Kofke, Phys. Rev. Lett. 74, 122 �1995�.
�5� R. Evans, in Fundamentals of Inhomogeneous Fluids, edited

by D. Henderson �Dekker, New York, 1992�, Chap. 3.
�6� J.-P. Hansen, and I. R. McDonald, Theory of Simple Liquids,

2nd ed. �Academic, London, 1986�.
�7� Y. Levin, Rep. Prog. Phys. 65, 1577 �2002�.
�8� J.-P. Hansen and H. Löwen, Annu. Rev. Phys. Chem. 51, 209

�2000�.
�9� A. P. Hynninen and M. Dijkstra, Phys. Rev. E 68, 021407

�2003�.
�10� R. Klein, H. H. von Grünberg, C. Bechinger, M. Brunner, and

V. Lobaskin, J. Phys.: Condens. Matter 14, 7631 �2002�.
�11� For a recent review see A. Piel and A. Melzer, Adv. Space Res.

29, 1255 �2002�, and references therein.
�12� O. Vaulina, S. Khrapak, and G. Morfill, Phys. Rev. E 66,

16404 �2002�.
�13� Y. Rosenfeld, Phys. Rev. E 49, 4425 �1994�.
�14� R. T. Farouki and S. Hamaguchi, J. Chem. Phys. 101, 9885

�1994�.
�15� F. H. Stillinger and T. A. Weber, Phys. Rev. B 22, 3790

�1980�.
�16� F. H. Stillinger and D. K. Stillinger, Physica A 244, 358

�1997�.
�17� A. A. Louis, P. G. Bolhuis, and J.-P. Hansen, Phys. Rev. E 62,

7961 �2000�.
�18� A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen, J. Phys.:

Condens. Matter 12, 5087 �2000�.
�19� S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. E 71,

050102�R� �2005�.
�20� I. O. Götze, H. M. Harreis, and C. N. Likos, J. Chem. Phys.

120, 7761 �2004�.
�21� B. B. Laird and D. M. Kroll, Phys. Rev. A 42, 4810 �1990�.
�22� G. A. McConnell and A. P. Gast, Phys. Rev. E 54, 5447

�1996�.
�23� B. Groh and M. Schmidt, J. Chem. Phys. 114, 5450 �2001�.
�24� M. Baus, J. Phys.: Condens. Matter 2, 2111 �1990�.
�25� Note that as 	→0, Eq. �11� is no longer a good approximation

to Eq. �4� with ��r� given by Eq. �6�—i.e., the overlap between
the density peaks on neighboring lattice sites becomes signifi-
cant. In practice, this occurs in regions of the phase diagram
where the system is a fluid. However, one must be aware that
as 	→0, Eq. �11� gives a spurious divergence →−� in the free
energy.

�26� F. A. Lindemann, Z. Phys. 11, 609 �1910�.
�27� F. C. Von der lage and H. A. Bethe, Phys. Rev. 71, 612 �1947�.
�28� P. Tarazona, Phys. Rev. Lett. 84, 694 �2000�.
�29� This is due to the fact that the DFT with exess Helmholtz free

energy given by Eq. �8� reduces to the lattice sum. Hence, the
fcc and/or bcc transition is driven by the duality relations of
the GCM, first noticed by Stillinger—see Refs. �1,16,30�.

�30� F. H. Stillinger, Phys. Rev. B 20, 299 �1979�.
�31� When the difference in coexisting densities is small, the con-

ditions for coexistence between phases of equal pressures and
chemical potentials in the two phases become equivalent to
equating the free energies F in the two phases.

�32� A. J. Archer, Ph.D. thesis, University of Bristol �unpublished�.
�33� M. Watzlawek, C. N. Likos, and H. Löwen, Phys. Rev. Lett.

82, 5289 �1999�.
�34� S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev.

E 56, 4671 �1997�.
�35� K. Kremer, M. O. Robbins, and G. S. Grest, Phys. Rev. Lett.

57, 2694 �1986�.
�36� M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys.

88, 3286 �1988�.
�37� R. O. Rosenberg and D. Thirumalai, Phys. Rev. A 36, 5690

�1987�.
�38� E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 �1991�.
�39� S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, J. Chem.

Phys. 105, 7641 �1996�.
�40� R. S. Hoy and M. O. Robbins, Phys. Rev. E 69, 056103

�2004�.
�41� P. Hopkins, A. J. Archer, and R. Evans, Phys. Rev. E 71,

027401 �2005�.
�42� C. N. Likos, Zs. T. Németh, and H. Löwen, J. Phys.: Condens.

Matter 6, 10 965 �1994�.
�43� C. Rascón, E. Velasco, L. Mederos, and G. Navascués, J.

Chem. Phys. 106, 6689 �1997�.
�44� A. J. Archer, C. N. Likos, and R. Evans, J. Phys.: Condens.

A. J. ARCHER PHYSICAL REVIEW E 72, 051501 �2005�

051501-6



Matter 16, L297 �2004�.
�45� P. N. Pusey, in Liquids, Freezing and the Glass Transition,

edited by J.-P. Hansen, D. Levesque, and J. Zinn-Justin, Pro-
ceedings of the Les Houches Summer School, Session LI, 3-28

July, 1989 �North-Holland, Amsterdam, 1991�.
�46� C. N. Likos, S. Rosenfeldt, N. Dingenouts, M. Ballauff, P.

Lindner, N. Werner, and F. Vögtle, J. Chem. Phys. 117, 1869
�2002�.

DENSITY FUNCTIONAL THEORY FOR THE FREEZING… PHYSICAL REVIEW E 72, 051501 �2005�

051501-7


